Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics & Telecommunication

Class Test – II Session- Jan. – June, 2023 Month- June Sem- 4th Subject- Analog Circuits - B028412(028)

me 4 Subject-Analog Circuits - D020412(02

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.

RH

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Construct and explain Colpitts Oscillator.	[8]	Create & Understand	CO5
2.	Construct and explain Resonant circuit oscillators.	[8]	Create & Understand	CO5
3.	Justify that the bandwidth of negative feedback amplifier is greater then the bandwidth of an amplifier without feedback.	[8]	Evaluate	CO5
4.	Discuss the effect of cascading on Bandwidth with the help of expression for lower and higher cutoff frequencies.	[8]	Evaluate	CO3
5.	Discuss Low Frequency response of an RC-coupled Stage.	[8]	Understand	CO3
6.	i. ii. iii. Evaluate for the transistor feedback amplifier stage shown, $h_{re} = 100$, $h_{ie} = 1 \text{ K}\Omega$ while h_{re} and h_{oe} are negligible. Determine with $R_e = 0$ R_{ir} R_{of} A_{vf} $V_{cc} = 10 \text{ V}$ $V_{cc} = 10 \text{ V}$ $V_{cc} = 10 \text{ V}$ $V_{cc} = 10 \text{ V}$	[8]	Evaluate	CO4

Y

.

0

SSIPMT RAIPUR Note: - All Questions carry 8 marks, Attempt any 5 guestions from . Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering Class Test – II Session- Jan. – June, 2021 Month- June Sem- ET&T 4 th Subject- EMF - B028413(028) Time Allowed: 2 hrs Max Marks: 40					
Q. NO.	Questions	Mark s	Levels of Bloom's taxonomy	CO	
1.	State & Prove Stoke's Theorem	2	Understand & Apply	CO3	
2.	Write Maxwell's equation for Static electric field. & Steady Magnetic field in point form as well as Integral form.	2	Understand & Apply	CO3	
3.	State & Prove Poynting Theorm	2	Understand & Apply	CO4	
4.	Derive wave equation for lossy dielectric medium & obtain equation for $\alpha \beta \& \eta$.	2	Understand & Apply	CO4	
5.	Derive the general solution of a Transmission line terminated with any Load Impedance \mathbf{Z}	2	Understand & Apply	COS	
6.	Explain SWR. And Derive Relation between SWR & Reflection coefficient	8	Understand & Apply	CO:	

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering Class Test – II Session- Jan. – June, 2023 Month- June

Sem-ET&T 4th Subject- Analog Communication- B028411(028)

Time Allowed: 2 hrs Max Marks: 40

Note: - Part "a" of both the questions is compulsory. Attempt any 2 from b,c and d

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	a) Define Sensitivity and Selectivity.	[2]	Understanding	CO4
	b) Explain in detail the Armstrong Method of generation of FM signal.	[8]	Understanding	CO3, CO4
	c) Explain the need of Pre-emphasis and De-emphasis in FM system	[8]	Understanding	CO4
	d) Explain in detail the working of a superheterodyne receiver with the help of a block diagram	[8]	Understanding	CO4
*	a) Define Figure of Merit	[2]	Understanding	CO5
	b) Distinguish among DSB-FC, DSB-SC, SSB-SC and VSB	[8]	Understanding	CO2
	c) Derive an expression to calculate FOM for DSB-SC Signal.	[8]	Understanding	CO5
	d) Calculate the Output signal to noise ratio in FM system.	[8]	Understanding	CO5

Sem-

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering Class Test – II Session- Feb– June, 2023 Month- June

ET&T 4th Subject- Probability Theory and Stochastic Theory – B028415(028)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Suppose height to the bottom of the clouds is a Gaussian random variable X for which $a_x = 4000 \text{ m}$ and $\sigma_x = 1000 \text{ m}$. A person bets that cloud height tomorrow will fall in the set A = {1000 m <x)="" 3300="" 4200="" <="" <x="" a="" are="" b="(2000" b(="" be="" bet.="" bets="" both="" by="" constant="" correct.="" density="" each="" find="" function="" function<="" height="" in="" ioint="" is="" m="" m)="" m).="" of="" person="" probabilities="" satisfied="" second="" so="" td="" terms="" that="" the="" they="" third="" valid="" while="" will="" win=""><td>[8]</td><td>Applying</td><td>CO2</td></x>	[8]	Applying	CO2
2.	$f_X, Y(x, y) = \begin{cases} be^{-(x+y)} & 0 < x < a \\ 0 & 0 < y < \infty \\ 0 & \text{elsewhere} \end{cases}$	[8]	Applying	CO2
3.	Define probability density function and Explain its properties. Explain types of probability density function.	[8]	Rememberi ng	CO2
4.	A random variable X has a probability density $f_{X}(x) = \begin{cases} \frac{\pi}{16} \cos\left(\frac{\pi x}{8}\right) & x \le 8\\ 0 & \text{otherwise} \end{cases}$ Find: (i) Its mean value E[X (ii) Its second moment E[X ²] (iii) Variance	[8]	Applying	CO3
5.	Show that the mean value and variance of the random variable having uniform density are $\overline{X} = E[X] = \frac{(a+b)}{2}$ $\sigma_x^2 = \frac{(b-a)^2}{12}$	[8]	Applying	CO3
6.	Explain the Poisson and Gaussian random process.	[8]	Understandi ng	CO4
7.	Assume that an ergpdic random process X(t) has an auto correlation function. $R_{xx}(\tau) = 18 + \frac{2}{6+t^2} [1 + 4\cos(12\tau)]$ (i) Find E[X] (ii) Does this process have periodic component	[8]	Applying	CO4

(iii) What is the average power in X(t)